

OVERVIEW: POSITIVE TRAIN CONTROL (PTC)

December 2017

PTC is a technology capable of automatically controlling train speeds and movements, should a train operator fail to take appropriate action in the prevailing conditions.

 For example, PTC can force a train to stop before it passes a signal displaying a stop indication, or before running through an improperly lined switch, averting a potential collision.

Positive Train Control WHAT DOES PTC DO?

PTC systems that meet the standards set by FRA regulations are required to reliably and functionally prevent:

- ✓ Train-to-train collisions;
- ✓ Over speed derailments;
- Incursion into an established work zone; and
- Movement through a main line switch in the improper position.
- ✓ Other functions are applicable within the requirements as specific conditions warrant.

Positive Train Control WHAT IS THIS HISTORY OF PTC?

How did we get here...

Positive Train Control

AMTRAK AND PTC

For Amtrak's purposes, there are 2 types of PTC

- PTC technologies that we own/operate and have installed on our infrastructure
- PTC technologies that have been chosen by other carriers for their infrastructure that Amtrak's locomotives and cab cars must operate and communicate with

Amtrak's PTC = ACSES, ITCS

- Approved by FRA, provide all elements of PTC
- ✓ In use on the NEC (ACSES) and Michigan Line (ITCS)

Freight carriers' and some other commuter RRs' PTC = IETMS

- Class I freight carriers and many commuter trains use the Interoperable Electronic Train Management System (I-ETMS).
- I-ETMS provides all the elements required for PTC

An Amtrak technician resetting a PTC transponder in Delaware along the Northeast Corridor.

Positive Train Control WHO IS RESPONSIBLE FOR PTC INSTALLATION?

ΜΑΜΤRAK

Positive Train Control CONCLUSION

- Responsibility for PTC is shared among parties, sometimes complicating implementation, but all parties are working towards the same goal.
- Installing PTC is one component of Amtrak's overarching commitment to the safety of our customers and employees and the communities we serve.
- Continued Congressional support is needed to ensure that Amtrak and commuter railroad PTC costs are funded.

AMTRAK

APPENDIX: Technical Systems

Positive Train Control TRACKSIDE SIGNAL SYSTEM

ABS, CTC and Interlockings

Intermediate (ABS) signals operate automatically:

- Detect presence of a train using "track circuits"
- Activates two signals behind the train to protect it:
 - Approach signal
 - Stop signal

Interlockings are controlled remotely by dispatchers:

- This system of remote control is called "Centralized Traffic Control," (CTC for short)
- ✓ Complex of signals and switches electronically "interlocked"
- Impossible to "line" an unsafe route

Clear signals permit engineers to operate the train at maximum authorized speeds.

Positive Train Control I-ETMS ARCHITECTURE

Interoperable Electronic Train Management System (I-ETMS):

I-ETMS is designed to:

- ✓ Prevent train-to-train collisions
 - Enforcing stop signals
 - Enforcing "authority limits" (i.e., track a train has permission to occupy)
- Prevent trains from derailing through excessive speed
- Prevent trains from entering work zones without proper authorization
- Prevent movement through an improperly set switch in the main track
- Provide warning and enforcement at a derail or switch providing access to a main track
- Provide warning and enforcement in the event of a highway-rail grade crossing warning device malfunction
- Provide warning and enforcement for a mandatory directive associated "After Arrival Of" train movements

Back Office & CAD

AMTRA

SOURCE: FEDERAL RAILROAD ADMINISTRATION

I-ETMS adds an overlay system to enforce the existing signal indications and civil speed restrictions

Positive Train Control PREDICTIVE SPEED ENFORCEMENT

If a train comes within Warning Distance of a speed restriction, and I-ETMS predicts train speed will exceed speed limit by 5mph or more when the train enters the restriction, a "Speed Reduction To XX mph" message will display along with the time remaining to enforcement braking.

If the engineer takes no action, computer will apply the brakes at the appropriate time, bringing the train to a stop.

Engineer will not be able to recover

AMTRAK

from a "penalty application" until the train has stopped.

Positive Train Control REACTIVE SPEED ENFORCEMENT

If a train exceeds maximum speed allowed for the track by 3 mph, I-ETMS will display a warning to indicate the train is over speed and a "Maximum Speed Is xx MPH" message.

If the train exceeds the maximum speed allowed for the speed of the

current location by at least 5 mph, I-ETMS will apply the brakes and display the "Maximum Speed Is xx MPH" message. *If a penalty brake application occurs,* the train MUST be stopped before recovery is permitted.

AMTRAK

FOR ADDITIONAL INFORMATION VISIT: media.amtrak.com